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Phase separation under two-dimensional Poiseuille flow
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The spinodal decomposition of a two-dimensional binary fluid under Poiseuille flow is studied by numerical
simulation. We investigated time dependence of domain sizes in directions parallel and perpendicular to the
flow. In an effective region of the flow, the power-law growth of a characteristic length in the direction parallel
to the flow changes from the diffusive regime with the growth expomen% to a new regime. The scaling
invariance of the growth in the perpendicular direction is destroyed after the diffusive regime. A recurrent
prevalence of thick and thin domains which determines log-time periodic oscillations has not been observed in
our model. The growth exponents in the infinite system under two-dimensional Poiseuille flow are obtained by
the renormalization group.
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[. INTRODUCTION to the flow increases frorhto 3. When the dimension of the
order parameter becomes infinity, the situation is similar. In
When an immiscible binary fluid is quenched into an un-this case the growth exponents have been calculated as
stable two-phase region, phase separation occurs. The time2 anda=3, disregarding the log correction, in the direc-
dependence of phase separation has attracted much attentiton parallel and perpendicular to the shear flow, respectively
for several decades. The most prominent result for the phagé—8], and the growth exponent without flow is given by
separation is that the average domain size is characterized by; [9]. The shear flow enhances the domain growth in the
the growth law direction parallel to the flow. Under Poiseuille flow the simi-
lar enhancement of the domain size is expected. Second, it is
R(t)~1, D interesting to investigate effects of flow in confined geom-
. etry. The dynamics of the phase separation in the presence of
\évi?fzrr(;ﬁt'\S/;ugerggéhpgﬁgi?%eg; ;Zen?é?:wg;ﬂ?:ﬁzgﬁ:l(iiz th walls without the flow have bgen reported by several authors
. e . ?10—13. These authors studied the growth of the wetting
growth of domains. In the so-called diffusive regime, theI d showed that although the average domain size
growth exponent becomes=13 irrespective of the spatial ayers, and s 9 -rag .
differs in magnitude, the growth exponent in both the direc-
ion parallel and perpendicular to the walls are the same. In

dimension[1].
The phase separation under the shear flow has not 0”$¥1e present paper, the two-dimensional Poiseuille flow is de-
ined between two static plates.

been technologically important, but also extensively studie

from purely scientific points of view in recent yed]. It. The outline of the present paper is as follows: In Sec. Il
has been reported that the shear flow alleviates frustration %e introduce the model and the numerical method used in
integration of the equation. The rigid-wall conditions are

the system and speeds up the system reaching the stable S(ﬁit
Aso presented in this section. In Sec. Ill, we show the results

[3,4]. In the present paper, we study the phase separation
a two-dimensional binary fluid under the Poiseuille flow. Wefor the time dependence of the average domain sizes. Section

solve a time-dependent Ginzburg-Landau equation numers, gives summary and discussion
cally and examine the power-law growth of the average do- '
main size in the direction parallel and perpendicular to the
flow. Our calculations are focused on two points. First, the
phase separation under the Poiseuille flow is modified from \ye start from the Ginzburg-Landau expression of the free
those under the shear flow. In the case of the shear flow, thenergy functionaF{ ¢},
distance dependence of the flow is linear, but in the case of

the Poiseuille flow it is quadratic. One can suppose that the 1
power-law dependence of the domain size under the Poi- F{¢}=f f dXdYE
seuille flow is quite different from those under the shear o

flow. Under the shear flow the power-law dependences of th
domain size in the diffusive regime are given by

II. MODEL AND NUMERICAL METHOD

1 1 1
- §¢2+ Z¢4+ E(Vcﬁ)z )

ﬁ/hered) is the difference of the local concentration of the

two components of a mixture. Let the region e
R/(H)~t* and R, (1)~tY3 ) ={(x,y)|0sx=<L,0sy=<L}. We define the system confined

between two parallel plates =0 andy=L. The time

whereR, andR, are the average domain sizes in the direc-dependence of the field variabdewithout the flow is given

tion parallel and perpendicular to the shear flow, respectivelyy the following Langevin equation:

[5]. Although the growth exponent of the domain size in the

direction perpendicular to the shear flow remains the same as ﬁ _ 2f )

those without the flow, the exponent in the direction parallel at o¢’
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where we disregard the noise term, which has been shown an dp(X,y,1)

irrelevant variable by renormalization groffp14,15. In or- =0=¢(i,—1,n)—¢(i,0n)=0, (13

der to conserve the sum of the field variable, we examine the » y=0
boundary conditions in detail. The sum of the field variable
is defined by TexYYl
ay>
y=0
I=f fﬂdxdyqﬁ- ©) =¢(i,—2,n)—3¢(i,—1n)+3¢(i,0n)
) " o —¢(i,1n)=0. (14
Under the conservation conditions, the valBgis indepen-
dent of time From Egs.(13) and(14), one easily obtains
ﬂ:J J dxdy’? B(i,—2n)=¢(i,10n), $(i,—1n)=¢(i,0n). (15
dt Q ot
One can also get similar equationsyat L,
1( 0% &2
=f fﬂdxdyz(m+ &—yz) H(IN+1n)=¢(i,N—-2n), &(i,N,n)=¢(i,N-1n).
(16)
(92 2
X| =+ ¢3—(—2+ —2> 4:0. (6) Under externally applied flow the following dynamical
ax= - dy equation after quench replaces the E4.
Deriving the second line from the first line, we used the time 9 SE
differential equatior(4). The boundary conditions which set —+J-€¢=V2—, (17
Eq. (6) to zero are at o
dp(X,y,1) o7¢(x,y,t)| where the ternw - V ¢ represents the effect of convection by
IX T ox ’ ' ™) the hydrodynamic flowy is equal to the externally imposed
x=0 x=L velocity field. For two-dimensional Poisezuille flowy
3 3 =(vx,vy) is given by @y,vy)=(=Vo(2L)%y(y—L),0
J ¢>(x,3y,t) :a d)(x,Sy,t) ’ (8) [17]. In }(l)ur simulations we usé,d the maximum of the veloc-
IX <=0 IX L ity Vo=0.01. Our model is justified on the assumption that
the two components of the binary liquid have similar me-
dp(X,Y,1t) dp(x,y,t) chanical properties and the external flow is not a rapid
T =0, T =0, C) stream. The boundary conditions discussed above have not
y=0 y=L been altered by the external flows. In the finite-difference
3 3 form, we used the center-difference scheme. Therefore, the
THX.y.h) -0 I P(X,y,1) ~0 (10  convection term becomes
ay3 y=0 , (;y3 y=L .
d @(i+1j,n—¢(i—1j,n)
Henceforth we impose the periodic boundary conditions at vulY) e =vx) SAX . (19
x=0 andx=L and the rigid-wall boundary conditions wat
=0 andy=L. If ¢(x+L,y,t)=a(x,y,t), Eqgs.(7) and(8) We investigated the dynamics of the phase separation in

are automatically satisfied. Equatiof® and (10) at y=0  the discrete model for a critical quench. The values of the
and y=L are the rigid-wall conditions. These conditions field ¢ were initially distributed as random numbers between
guarantee no flux through the rigid wall &0 andy=L. [-0.1, 0.1 under the condition that the sum of the field
Here, we do not take account of any interaction potentialvariable at each lattice points equals zero. We practiced eight
between the rigid wall and the binary fluid. runs at each initial random distribution. The average of all
In order to solve the differential equatidd), we adopt a initial configuration corresponds to the average over the ther-
finite-difference approximation for both the spatial and tem-mal noise. In our simulations we used a time sigp=0.3
poral derivativeq16]. In this approximation the following and spatial mesh sizesx=Ay=1.7 [16]. Our simulations

definitions are used: with these choise of the time step and spatial mesh sizes did
_ _ not suffer from numerical instabilities at least up to the maxi-
Xi=1Ax, yj=jAy, t;=nAt, (1) mum of the timen,,,,=600 000.
B(i,j,n)=B(Xi,Yj tn). (12 lll. RESULTS
We consider aN X N lattice with N=256. The values of In this section we discuss the results of the numerical

andj are ranging from 0 toN— 1. The rigid-wall boundary simulations. In Fig. 1 we show a sequence of configurations
conditions are also rewritten in the finite-difference form  of the field ¢. The top and bottom lines denote rigid walls.
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FIG. 1. A sequence of configurations of the fiejdat time't FIG. 2. (@ Time evolution ofR,. The solid and dotted line

=6000,12 000,24 000,48 000,96 000,192 000. denote thet¥® and t>° power-law growth, respectivelyb) Time

evolution of R, . The solid line denotes the’® power-law growth.
After the early stage, domains are forming from the mixed

initial state and a bicontinuous structure is observed. The Nt g N1tk o o
influence of the external flow is recognized in the snapshot8y(K.n) =g iZO N ZO ¢(i,j+k,n)(i,j,n)
aftert=24000. The domains have been extended along the - E_k =
flow.
In order to analyze the domain growth quantitatively, we N2 1 N1k
define the pair correlation function. Since the system is not + — — 2 o(i,j+k,n)e(i,j,n) \,
isotropic, the pair correlation function is defined each in the N =0 ﬂi K j=NI2
direction parallel and perpendicular to the flow separately. 2
The pair correlation functiog, along the flow is defined as (20)
N_1 N_1 where the denominator in the angular bracket comes from
1 1 S . the result that the number of a pair @f(i,j+k,n) and
Gu(kom)= NJZO < 2, itk medi.in ), #(i,j.n) is N/2—K in the regions 8 j<N/2—1 or N/2<]

(19) <N-—1. We confirmed the validity of this definitiof20) by
means of comparing the results from E49) with those
from Eq. (20) for no flow system. The locations of the first

where the angular bracket denotes an average over all rungeros of these functiond 9) and(20) are taken as measures
Since the system under two-dimensional Poiseuille flow iof the characteristic lengtR,(t) andR, (t) in the direction
symmetric with respect to the=(N—1)/2 line, we define parallel and perpendicular to the flow, respectively.

the pair correlation function in each region<Q<N/2—1 In Fig. 2 we show log-log plots of the characteristic
andN/2=j=<N-—1 and average them as follows: lengthR(t) andR, (t) vs timet. The oscillating behavior of
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R,(t) and R, (t) in the shear flow case could not be ob- variance of the variablg andy under the scale transforma-
served. The solid lines in Figs(& and 2b) show the power tions implies thatr, anday correspond to the growth expo-
law t2. In the begining both oR,(t) andR, (t) grow with  nents in the direction parallel and perpendicular to the flow,
the exponentr= 3. After this stage the behavior &(t) are  respectively. We assume that the fixed point free energy sat-
quite different from that ofR, (t). The growth ofRy(t) is  isfies the relation
enhanced due to the flow. After passing through a transi-
tional stage the curve approaches to a line with a constant F{b%l’z,(t’)}zb“xF{gb{;(t’)}. (28
slope. This result indicates the existence of a new regime
with power-law growth. In the case @&, (t), on the other This relation stems from the result that the main contribution
hand, after the diffusive regime it saturates and decreasasg the free energy is due to the interfaces along the flow. By
with time. The decrease oR,(t) has been caused by substituting Eqs(25) and (26) into the Langevin equation
breakup of domains by the external flow. In this time region(23) and relation(24) with Eq. (28), one obtains a Langevin
the numerical simulation with a different initial configuration equation with transformed parameters
has a different form ofg,. We conclude that the scaling
invariance in the direction perpendicular to the flow is bro- ' =Th% 2¢y=2{+1 /=y axt2aytl - Tr=Th~ax,
ken by the flow. (29

In order to analyze the power-law growth under the influ-
ence of the external flow, we estimate the growth exponentghere we used the relatidg< k, and disregardet, in K2,
by the renormalization group meth¢8]. We start from the  The relationk, <k, is satisfied at late time. The above recur-

following Langevin equation: sion relationg29) are the same as ones under the shear flow
SF excepty’ [5]. A fixed point of Eq.(29) is obtained when
%+5-§¢=FV2—+ ” 21) ax=_§ and ay=3. It has been shown that the temperature is
ot o¢p the irrelevant variable.

Taking account of the result from the renormalization
group, we reconsider the result of the numerical simulations.
The growth exponent oR,(t) is expected to approach
=2. The dotteg line in Fig. @ denotes the power-law

> > __ 257 2 _ growth with @ = 3. In the direction perpendicular to the flow
(7M1, t) (M2, t))= = 2TEVZ6(M =) 3l tZ)'(ZZ) the growth exponent = 3 is obtained by the renormalization
group. However, the boundary condition has not been taken
whereT is the temperature of the binary fluid and the angularaccount of in the renormalization group method. The break-
brackets denote ensemble average. For simplicity, let the vetown of the scale invariance in the direction perpendicular to
locity bev = yy?e,. We introduce the fourier components of thﬁ rovLorig(ijnates ;‘from the rigigj-wall(;)oundary conditionfs.h
; R - T - > These boundary effects are observed in a sequence of the
the field ¢ by &)=V Jdré(r,hexpfkn). In the k configuration of the field variable at different times. Since
the velocity field on the rigid walls is zero, domains near the

where a transport coefficieitand the thermal noisg have
been reinstated explicitly. The mean valuenok zero andy
satisfies the relation

space, the Langevin equati¢2l) becomes

api(t) P pe(t) ., SF rigid walls have been nearly still. On the other hand, the
g Tk =Tk Wﬁ”ﬂ& (23 velocity field at the center of two plates is high, so that
y B domains have been drifting quickly. Domains repeat breakup
with and adhesion, and these cause the breakdown of the scale
invariance in the direction perpendicular to the flow.
() 7-(t2)) =2K*TT 8(t;—tp). (24)
IV. SUMMARY AND DISCUSSION
The renormalization group consists of the change of the scale ) ] ] ) }
and the renormalization of the field We investigate the phase separation of binary fluid under
the two-dimensional Poiseuille flow by the numerical simu-
k.= kb, k)’l:kyb“y, t'=tb™1, (25) lations. The time dependence of the average domain size is
examined. At an early stage the characteristic length in the
¢,;(t)=b5¢>é,(t’), (26)  direction parallel and perpendicular to the flow have the

growth exponent in the diffusive regime=3. At a late

whereb is the dilatation factor. The existence of the charac-Stage, the time dependence R{f(t) is quite different from

teristic length implies that the structure factor has the scalinghat of R, (t). After a transitional stage the growth exponent
form of the average domain size along the flow is given dy

=2. The effect of the flow enhances the growth in the di-
S(E,t)=<¢12(t)¢—12(t)>=Ru(t)Rl(t)f(X,y), (27) rection parallel to the flow. In the case Bf (t), after the
diffusive regime we observed the breakdown of the scale
wherex=k,R,(t) andy=kyR, (t). In order that the above invariance. The breakdown of the scale invariance is caused
equation(27) is invariant under the scale transformationsby repetitions of breakup and adhesion of domains. The
(25 and(26), the relation 2= a,+ «, is obtained. The in- breakup and adhesion of domains result from the velocity
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field which varies from place to place in the direction per-latory behavior of the average domain sizes prevents a
pendicular to the flow. straightforward computation of the growth exponents. In the
We estimated the growth exponents by the renormalizacase of the two-dimensional Poiseuille flow, the log-time pe-
tion group method. The growth exponeats § anda=3 in  riodic oscillations of the characteristic length have not been
the direction parallel and perpendicular to the flow are obpbserved. Because of the breakdown of the scaling invari-
tained, respectively. The system to which we applied thexnce in the direction perpendicular to the flow, our model
renormalization group is defined in the infinite system, sohave not been suffered from the competition between the
that the boundary effects are disregarded. It is impossible tgharacteristic lengths. As a result the growth exponent along

impose the periodic boundary condition on the system undethe flow is obtained by the numerical simulations.
the two-dimensional Poiseuille flow in the direction perpen-

dicular to the flow.

Finally, we compare the present Poiseuille flow case with
the shear flow casb]. In the shear flow case, the recurrent
prevalence of thick and thin domains causes the log-time We thank Professor T. Inagaki for a critical reading of the
periodic oscillations of the average domain sizes. The oscilmanuscript and encouragement.
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