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Phase separation under two-dimensional Poiseuille flow
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The spinodal decomposition of a two-dimensional binary fluid under Poiseuille flow is studied by numerical
simulation. We investigated time dependence of domain sizes in directions parallel and perpendicular to the
flow. In an effective region of the flow, the power-law growth of a characteristic length in the direction parallel
to the flow changes from the diffusive regime with the growth exponenta5

1
3 to a new regime. The scaling

invariance of the growth in the perpendicular direction is destroyed after the diffusive regime. A recurrent
prevalence of thick and thin domains which determines log-time periodic oscillations has not been observed in
our model. The growth exponents in the infinite system under two-dimensional Poiseuille flow are obtained by
the renormalization group.
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I. INTRODUCTION

When an immiscible binary fluid is quenched into an u
stable two-phase region, phase separation occurs. The
dependence of phase separation has attracted much atte
for several decades. The most prominent result for the ph
separation is that the average domain size is characterize
the growth law

R~ t !;ta, ~1!

wherea is a growth exponent. The growth exponenta takes
different values depending on the mechanism controlling
growth of domains. In the so-called diffusive regime, t
growth exponent becomesa5 1

3 irrespective of the spatia
dimension@1#.

The phase separation under the shear flow has not
been technologically important, but also extensively stud
from purely scientific points of view in recent years@2#. It
has been reported that the shear flow alleviates frustratio
the system and speeds up the system reaching the stable
@3,4#. In the present paper, we study the phase separatio
a two-dimensional binary fluid under the Poiseuille flow. W
solve a time-dependent Ginzburg-Landau equation num
cally and examine the power-law growth of the average
main size in the direction parallel and perpendicular to
flow. Our calculations are focused on two points. First,
phase separation under the Poiseuille flow is modified fr
those under the shear flow. In the case of the shear flow
distance dependence of the flow is linear, but in the cas
the Poiseuille flow it is quadratic. One can suppose that
power-law dependence of the domain size under the
seuille flow is quite different from those under the she
flow. Under the shear flow the power-law dependences of
domain size in the diffusive regime are given by

Ri~ t !;t4/3 and R'~ t !;t1/3, ~2!

whereRi andR' are the average domain sizes in the dire
tion parallel and perpendicular to the shear flow, respectiv
@5#. Although the growth exponent of the domain size in t
direction perpendicular to the shear flow remains the sam
those without the flow, the exponent in the direction para
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to the flow increases from1
3 to 4

3. When the dimension of the
order parameter becomes infinity, the situation is similar.
this case the growth exponents have been calculated aa
5 5

4 anda5 1
4 , disregarding the log correction, in the dire

tion parallel and perpendicular to the shear flow, respectiv
@6–8#, and the growth exponent without flow is given bya
5 1

4 @9#. The shear flow enhances the domain growth in
direction parallel to the flow. Under Poiseuille flow the sim
lar enhancement of the domain size is expected. Second,
interesting to investigate effects of flow in confined geo
etry. The dynamics of the phase separation in the presenc
walls without the flow have been reported by several auth
@10–13#. These authors studied the growth of the wetti
layers, and showed that although the average domain
differs in magnitude, the growth exponent in both the dire
tion parallel and perpendicular to the walls are the same
the present paper, the two-dimensional Poiseuille flow is
fined between two static plates.

The outline of the present paper is as follows: In Sec.
we introduce the model and the numerical method used
the integration of the equation. The rigid-wall conditions a
also presented in this section. In Sec. III, we show the res
for the time dependence of the average domain sizes. Se
IV gives summary and discussion.

II. MODEL AND NUMERICAL METHOD

We start from the Ginzburg-Landau expression of the f
energy functionalF$f%,

F$f%5E E
V

dxdy
1

2 F2
1

2
f21

1

4
f41

1

2
~¹f!2G , ~3!

wheref is the difference of the local concentration of th
two components of a mixture. Let the region beV
5$(x,y)u0<x<L,0<y<L%. We define the system confine
between two parallel plates aty50 and y5L. The time
dependence of the field variablef without the flow is given
by the following Langevin equation:

]f

]t
5¹2

dF

df
, ~4!
©2001 The American Physical Society05-1
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where we disregard the noise term, which has been show
irrelevant variable by renormalization group@1,14,15#. In or-
der to conserve the sum of the field variable, we examine
boundary conditions in detail. The sum of the field variab
is defined by

I 5E E
V

dxdyf. ~5!

Under the conservation conditions, the value~5! is indepen-
dent of time

dI

dt
5E E

V
dxdy

]f

]t

5E E
V

dxdy
1

2 S ]2

]x2 1
]2

]y2D
3F2f1f32S ]2

]x2 1
]2

]y2DfG50. ~6!

Deriving the second line from the first line, we used the tim
differential equation~4!. The boundary conditions which se
Eq. ~6! to zero are

]f~x,y,t !

]x U
x50

5
]f~x,y,t !

]x U
x5L

, ~7!

]3f~x,y,t !

]x3 U
x50

5
]3f~x,y,t !

]x3 U
x5L

, ~8!

]f~x,y,t !

]y U
y50

50,
]f~x,y,t !

]y U
y5L

50, ~9!

]3f~x,y,t !

]y3 U
y50

50,
]3f~x,y,t !

]y3 U
y5L

50 . ~10!

Henceforth we impose the periodic boundary conditions
x50 andx5L and the rigid-wall boundary conditions aty
50 andy5L. If f(x1L,y,t)5f(x,y,t), Eqs.~7! and ~8!
are automatically satisfied. Equations~9! and ~10! at y50
and y5L are the rigid-wall conditions. These condition
guarantee no flux through the rigid wall aty50 andy5L.
Here, we do not take account of any interaction poten
between the rigid wall and the binary fluid.

In order to solve the differential equation~4!, we adopt a
finite-difference approximation for both the spatial and te
poral derivatives@16#. In this approximation the following
definitions are used:

xi5 iDx, yj5 j Dy, tn5nDt, ~11!

f~ i , j ,n!5f~xi ,yj ,tn!. ~12!

We consider aN3N lattice with N5256. The values ofi
and j are ranging from 0 toN21. The rigid-wall boundary
conditions are also rewritten in the finite-difference form
05150
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]f~x,y,t !

]y U
y50

50⇒f~ i ,21,n!2f~ i ,0,n!50, ~13!

]3f~x,y,t !

]y3 U
y50

50

⇒f~ i ,22,n!23f~ i ,21,n!13f~ i ,0,n!

2f~ i ,1,n!50. ~14!

From Eqs.~13! and ~14!, one easily obtains

f~ i ,22,n!5f~ i ,1,n!, f~ i ,21,n!5f~ i ,0,n!. ~15!

One can also get similar equations aty5L,

f~ i ,N11,n!5f~ i ,N22,n!, f~ i ,N,n!5f~ i ,N21,n!.
~16!

Under externally applied flow the following dynamica
equation after quench replaces the Eq.~4!

]f

]t
1vW •¹W f5¹2

dF

df
, ~17!

where the termvW •¹W f represents the effect of convection b
the hydrodynamic flow.vW is equal to the externally impose
velocity field. For two-dimensional Poiseuille flow,vW
5(vx ,vy) is given by (vx ,vy)5„2V0(2/L)2y(y2L),0…
@17#. In our simulations we used the maximum of the velo
ity V050.01. Our model is justified on the assumption th
the two components of the binary liquid have similar m
chanical properties and the external flow is not a ra
stream. The boundary conditions discussed above have
been altered by the external flows. In the finite-differen
form, we used the center-difference scheme. Therefore,
convection term becomes

vx~y!
]f

]x
⇒vx~ j !

f~ i 11,j ,n!2f~ i 21,j ,n!

2Dx
. ~18!

We investigated the dynamics of the phase separatio
the discrete model for a critical quench. The values of
field f were initially distributed as random numbers betwe
@20.1, 0.1# under the condition that the sum of the fie
variable at each lattice points equals zero. We practiced e
runs at each initial random distribution. The average of
initial configuration corresponds to the average over the th
mal noise. In our simulations we used a time stepDt50.3
and spatial mesh sizesDx5Dy51.7 @16#. Our simulations
with these choise of the time step and spatial mesh sizes
not suffer from numerical instabilities at least up to the ma
mum of the timenmax5600 000.

III. RESULTS

In this section we discuss the results of the numeri
simulations. In Fig. 1 we show a sequence of configurati
of the fieldf. The top and bottom lines denote rigid wall
5-2
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After the early stage, domains are forming from the mix
initial state and a bicontinuous structure is observed. T
influence of the external flow is recognized in the snapsh
after t524 000. The domains have been extended along
flow.

In order to analyze the domain growth quantitatively, w
define the pair correlation function. Since the system is
isotropic, the pair correlation function is defined each in
direction parallel and perpendicular to the flow separate
The pair correlation functiongx along the flow is defined a

gx~k,n!5
1

N (
j 50

N21 K 1

N (
i 50

N21

f~ i 1k, j ,n!f~ i , j ,n!L ,

~19!

where the angular bracket denotes an average over all r
Since the system under two-dimensional Poiseuille flow
symmetric with respect to thej 5(N21)/2 line, we define
the pair correlation function in each region 0< j <N/221
andN/2< j <N21 and average them as follows:

FIG. 1. A sequence of configurations of the fieldf at time t
56000,12 000,24 000,48 000,96 000,192 000.
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gy~k,n!5
1

N (
i 50

N21 K 1

N

2
2k

(
j 50

N/2212k

f~ i , j 1k,n!f~ i , j ,n!L
1

1

N (
i 50

N21 K 1

N

2
2k

(
j 5N/2

N212k

f~ i , j 1k,n!f~ i , j ,n!L ,

~20!

where the denominator in the angular bracket comes fr
the result that the number of a pair off( i , j 1k,n) and
f( i , j ,n) is N/22k in the regions 0< j <N/221 or N/2< j
<N21. We confirmed the validity of this definition~20! by
means of comparing the results from Eq.~19! with those
from Eq. ~20! for no flow system. The locations of the firs
zeros of these functions~19! and~20! are taken as measure
of the characteristic lengthRi(t) andR'(t) in the direction
parallel and perpendicular to the flow, respectively.

In Fig. 2 we show log-log plots of the characterist
lengthRi(t) andR'(t) vs timet. The oscillating behavior of

FIG. 2. ~a! Time evolution ofRi . The solid and dotted line
denote thet1/3 and t5/3 power-law growth, respectively.~b! Time
evolution ofR' . The solid line denotes thet1/3 power-law growth.
5-3
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Ri(t) and R'(t) in the shear flow case could not be o
served. The solid lines in Figs. 2~a! and 2~b! show the power
law t1/3. In the begining both ofRi(t) andR'(t) grow with
the exponenta5 1

3. After this stage the behavior ofRi(t) are
quite different from that ofR'(t). The growth ofRi(t) is
enhanced due to the flow. After passing through a tra
tional stage the curve approaches to a line with a cons
slope. This result indicates the existence of a new reg
with power-law growth. In the case ofR'(t), on the other
hand, after the diffusive regime it saturates and decrea
with time. The decrease ofR'(t) has been caused b
breakup of domains by the external flow. In this time regi
the numerical simulation with a different initial configuratio
has a different form ofgy . We conclude that the scalin
invariance in the direction perpendicular to the flow is b
ken by the flow.

In order to analyze the power-law growth under the infl
ence of the external flow, we estimate the growth expone
by the renormalization group method@5#. We start from the
following Langevin equation:

]f

]t
1vW •¹W f5G¹2

dF

df
1h, ~21!

where a transport coefficientG and the thermal noiseh have
been reinstated explicitly. The mean value ofh is zero andh
satisfies the relation

^h~rW1 ,t1!h~rW2 ,t2!&522TG¹2d~rW12rW2!d~ t12t2!,
~22!

whereT is the temperature of the binary fluid and the angu
brackets denote ensemble average. For simplicity, let the
locity bevW 5gy2eW x . We introduce the fourier components
the field f by fkW(t)5V21/2*drWf(rW,t)exp(ikW•rW). In the kW
space, the Langevin equation~21! becomes

]fkW~ t !

]t
1 igkx

]2fkW~ t !

]ky
2 52GkW2

dF

df2kW~ t !
1hkW , ~23!

with

^hkW~ t1!h2kW~ t2!&52kW2TGd~ t12t2!. ~24!

The renormalization group consists of the change of the s
and the renormalization of the field

kx85kxb
ax, ky85kyb

ay, t85tb21, ~25!

fkW~ t !5bzf
kW8
8 ~ t8!, ~26!

whereb is the dilatation factor. The existence of the chara
teristic length implies that the structure factor has the sca
form

S~kW ,t !5^fkW~ t !f2kW~ t !&5Ri~ t !R'~ t ! f ~x,y!, ~27!

wherex5kxRi(t) and y5kyR'(t). In order that the above
equation ~27! is invariant under the scale transformatio
~25! and ~26!, the relation 2z5ax1ay is obtained. The in-
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variance of the variablex andy under the scale transforma
tions implies thatax anday correspond to the growth expo
nents in the direction parallel and perpendicular to the flo
respectively. We assume that the fixed point free energy
isfies the relation

F$bzf
kW8
8 ~ t8!%5baxF$fkW

8~ t8!%. ~28!

This relation stems from the result that the main contribut
to the free energy is due to the interfaces along the flow.
substituting Eqs.~25! and ~26! into the Langevin equation
~23! and relation~24! with Eq. ~28!, one obtains a Langevin
equation with transformed parameters

G85Gbax22ay22z11, g85gb2ax12ay11, T85Tb2ax,
~29!

where we used the relationkx!ky and disregardedkx in kW2.
The relationkx!ky is satisfied at late time. The above recu
sion relations~29! are the same as ones under the shear fl
exceptg8 @5#. A fixed point of Eq.~29! is obtained when
ax5 5

3 anday5 1
3. It has been shown that the temperature

the irrelevant variable.
Taking account of the result from the renormalizati

group, we reconsider the result of the numerical simulatio
The growth exponent ofRi(t) is expected to approacha
5 5

3 . The dotted line in Fig. 2~a! denotes the power-law
growth witha5 5

3 . In the direction perpendicular to the flow
the growth exponenta5 1

3 is obtained by the renormalizatio
group. However, the boundary condition has not been ta
account of in the renormalization group method. The bre
down of the scale invariance in the direction perpendicula
the flow originates from the rigid-wall boundary condition
These boundary effects are observed in a sequence o
configuration of the field variablef at different times. Since
the velocity field on the rigid walls is zero, domains near t
rigid walls have been nearly still. On the other hand, t
velocity field at the center of two plates is high, so th
domains have been drifting quickly. Domains repeat brea
and adhesion, and these cause the breakdown of the
invariance in the direction perpendicular to the flow.

IV. SUMMARY AND DISCUSSION

We investigate the phase separation of binary fluid un
the two-dimensional Poiseuille flow by the numerical sim
lations. The time dependence of the average domain siz
examined. At an early stage the characteristic length in
direction parallel and perpendicular to the flow have t
growth exponent in the diffusive regimea5 1

3 . At a late
stage, the time dependence ofRi(t) is quite different from
that ofR'(t). After a transitional stage the growth expone
of the average domain size along the flow is given bya
5 5

3 . The effect of the flow enhances the growth in the
rection parallel to the flow. In the case ofR'(t), after the
diffusive regime we observed the breakdown of the sc
invariance. The breakdown of the scale invariance is cau
by repetitions of breakup and adhesion of domains. T
breakup and adhesion of domains result from the velo
5-4
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field which varies from place to place in the direction pe
pendicular to the flow.

We estimated the growth exponents by the renormal
tion group method. The growth exponentsa5 5

3 anda5 1
3 in

the direction parallel and perpendicular to the flow are
tained, respectively. The system to which we applied
renormalization group is defined in the infinite system,
that the boundary effects are disregarded. It is impossibl
impose the periodic boundary condition on the system un
the two-dimensional Poiseuille flow in the direction perpe
dicular to the flow.

Finally, we compare the present Poiseuille flow case w
the shear flow case@5#. In the shear flow case, the recurre
prevalence of thick and thin domains causes the log-t
periodic oscillations of the average domain sizes. The os
ev

,
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latory behavior of the average domain sizes prevent
straightforward computation of the growth exponents. In
case of the two-dimensional Poiseuille flow, the log-time p
riodic oscillations of the characteristic length have not be
observed. Because of the breakdown of the scaling inv
ance in the direction perpendicular to the flow, our mod
have not been suffered from the competition between
characteristic lengths. As a result the growth exponent al
the flow is obtained by the numerical simulations.
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